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A B S T R A C T

In a longitudinal clinical study to compare two groups, the primary end point is often the time to
a specific event (eg, disease progression, death). The hazard ratio estimate is routinely used to
empirically quantify the between-group difference under the assumption that the ratio of the two
hazard functions is approximately constant over time. When this assumption is plausible, such a
ratio estimate may capture the relative difference between two survival curves. However, the
clinical meaning of such a ratio estimate is difficult, if not impossible, to interpret when the
underlying proportional hazards assumption is violated (ie, the hazard ratio is not constant over
time). Although this issue has been studied extensively and various alternatives to the hazard ratio
estimator have been discussed in the statistical literature, such crucial information does not seem
to have reached the broader community of health science researchers. In this article, we
summarize several critical concerns regarding this conventional practice and discuss various
well-known alternatives for quantifying the underlying differences between groups with respect to
a time-to-event end point. The data from three recent cancer clinical trials, which reflect a variety
of scenarios, are used throughout to illustrate our discussions. When there is not sufficient
information about the profile of the between-group difference at the design stage of the study, we
encourage practitioners to consider a prespecified, clinically meaningful, model-free measure for
quantifying the difference and to use robust estimation procedures to draw primary inferences.

J Clin Oncol 32:2380-2385. © 2014 by American Society of Clinical Oncology

INTRODUCTION

To quantify the burden or progression of disease via
the occurrence of a specific clinical event relating to
morbidity or mortality, the time to the event for each
study patient is frequently used as a primary end
point for a clinical study. The underlying survival or
hazard function provides a profile for the temporal
behavior of the event times.1,2 At any specific time
point, the value of the survival function is simply the
probability of a patient remaining event free. The
corresponding hazard function is approximately
the ratio of the probability that an event-free patient
would experience the event in the next small time
period to the length of such a time span (eg, a
month). Unlike the survival function, the absolute
values of the hazard function may be difficult to
interpret clinically.

When comparing two groups, a common prac-
tice is to make the assumption that the ratio of the
two hazard functions is constant over time and to
use such a constant ratio as a parameter to quantify
the between-group difference. The Cox procedure is
then used to estimate this unknown constant hazard

ratio parameter.3 In fact, CONSORT guidelines4

and the Cochrane handbook5 advise reporting a
hazard ratio estimate to quantify the group differ-
ence. When the proportional hazards (PH) assump-
tion is plausible, this parameter would partially
capture the relative difference between two survival
curves but is not entirely satisfactory. This is because
this summary ratio, without appropriate back-
ground information about the absolute hazard,
lacks the context to allow study investigators to
translate the hazard ratio into a more transparent
clinical benefit, such as the prolonged survival time.
Moreover, like the relative risk (or odds) ratio for a
binary outcome, the precision of the hazard ratio
estimator depends primarily on the observed num-
ber of events, not the sample size or duration of the
study. When the event rates are low for both groups,
as is common in the safety evaluation of drugs and
devices, the resulting CI for the hazard ratio estimate
can be quite large, ostensibly suggesting that there is
not enough information to properly assess the
between-group difference. However, when the two
groups are identical and the study has a large num-
ber of patients and a long follow-up time, such a
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conclusion can be misleading. The patients’ exposure times, if prop-
erly used, also provide valuable information for evaluating the
between-group difference, especially for an equivalence or noninferi-
ority study. Alternative approaches discussed in this article may be
more appropriate for handling this situation.

When the PH assumption is violated (ie, the true hazard ratio is
changing over time), the parameter actually being estimated by the
Cox procedure may not be a meaningful measure of the between-
group difference; it is not, for example, simply an average of the true
hazard ratio over time.6 Furthermore, this parameter generally de-
pends on the study-specific follow-up times. As a result, two studies
enrolling patients from the same population could produce different
hazard ratio estimates, no matter how large the sample sizes may be,
because of the choice of follow-up time used in each study. Further-
more, because of misspecification of how the difference between
groups varies over time, the PH estimation procedure may not be able
to effectively detect a true difference between groups. These undesir-
able features6-9 render the PH estimation procedure a nonrobust
measure of the difference between two survival curves.

Note that for any comparison of two survival curves, there is no
single metric or parameter that can capture the entire profile of their
difference. However, a population summary measure for the between-
groupdifferenceiscrucialforthepurposesofstudydesignandplanningas
wellas for theoverall evaluationofaparticular intervention. Inthisarticle,
we present several well-known alternative, model-free summary mea-
sures. A model-free measure for the group difference does not rely on a
specificassumptiontogenerateeachofthesurvivalfunctionsortoexpress
the contrast between the two survival curves. When there is not sufficient
information about the profile of the between-group difference at the
design stage of the study, we encourage practitioners to consider a pre-
specified, clinically meaningful, model-free measure for quantifying the
difference and to use robust estimation procedures to draw primary in-
ferences. The survival data from three recent cancer clinical trials repre-
senting different scenarios are used to illustrate the issues previously
described as well as various model-free alternative approaches. The com-
puter code (surv2sampleComp) for implementing the estimation proce-
dures discussed in this article is available from the CRAN (http://cran.r-
project.org).

EXAMPLES FROM CANCER CLINICAL TRIALS WITH SURVIVAL
TIME END POINT

The first example is from a recent study conducted by the Eastern
Cooperative Oncology Group (ECOG) for comparing two groups of
patients treated by low- and high-dose dexamethasone for newly
diagnosed multiple myeloma.10 For this trial, there were 445 enrolled
patients: 222 were assigned to the low-dose and 223 to the high-dose
group. Figure 1A shows the Kaplan-Meier (KM) curves of overall
survival based on the data collected by November 2008.10 The survival
curve for the low-dose group (blue) is always above the one for the
high-dose group (gold), except at the end of the follow-up. With such
a differential pattern of survival, the patients in the low-dose group
visually appear to survive longer than those in the high-dose group.
The hazard ratio (low dose over high dose) estimate is 0.87 (95% CI,
0.60 to 1.27) with a P value of .47. The wide CI suggests that either
there is not enough information to assess the between-group differ-
ence or that the constant hazard ratio assumption cannot adequately
describe the difference.

To explore the data further, Figure 1B shows a nonparametric
estimate of the hazard ratio (low dose over high dose) as a function of
time with 95% confidence band,11 indicating that the hazard rate is
initially lower in the low-dose group than in the high-dose group, with
the ratio gradually increasing over time. The hazard ratio curve crosses
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Fig 1. Estimated survival curves, hazard ratio, and restricted mean survival
times with data from the Eastern Cooperative Oncology Group E4A03 study. (A)
Kaplan-Meier curves for low-dose (blue) and high-dose (gold) groups. (B) Esti-
mate of the ratio of hazard functions (low dose over high dose) over time and
corresponding 0.95 point-wise confidence band. (C) Estimate of restricted mean
survival time (blue area) and the restricted mean time lost (gray area) up to 40
months for the low-dose group.
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one in the middle of the study, suggesting that there is a qualitative
interaction between the hazard ratio and time. Note that the overall
hazard ratio estimate of 0.87 does not mean that the hazard rate of the
patients in the low-dose group is reduced by 13% uniformly through-
out the study. Such an empirical summary of the group difference can
be misleading in this case.

In practice, it can be rather difficult to justify the validity of a
model such as the PH model. For instance, a conventional approach to
examining the adequacy of the PH assumption is based on lack-of-fit
tests.12-14 However, such tests would generally not provide much
comfort for the assessment of model adequacy, because they may not
have adequate power to detect model misspecifications with small or
moderate numbers of observed events in the study. Conversely, for a
study with a large number of events, it is likely that one would reject a
PH model, even with only minor departures from true proportional-
ity. For this cancer example, the PH assumption appears to be invalid
on visual inspection. This is supported by the standard lack-of-fit tests
for the PH model based on Schoenfeld residuals12 and cumulative
martingale residuals.14 The resulting P values are .002 and .001, re-
spectively. Now, in such circumstances in which the PH assumption is
violated, the question is what other measures could be used to sum-
marize the difference between two groups.

For the second example, we used the data from a study published
in the Journal of Clinical Oncology (JCO)15 with a seemingly quantita-
tive interaction between the hazard ratio and time in contrast to the
qualitative interaction observed in the ECOG trial. This study was a
randomized trial to compare the overall survival time distributions
between single-agent pemetrexed (P) and the combination of carbo-
platin and pemetrexed (CP) in patients with advanced non–small-cell
lung cancer with an ECOG performance status of 2. The trial enrolled
205 eligible patients who were observed for a median of 27.5 months.
The median survival times of the CP arm and the P arm were 9.3 and
5.3 months, respectively, and the hazard ratio was 0.62 (95% CI, 0.46
to 0.83; P � .001).15 Note that the individual survival time observa-
tions from the study are not available to the public. For illustration
purposes, we use the algorithm proposed by Guyot et al16 to recon-
struct the individual-level survival times from the information pre-
sented in the article.15 Specifically, the software DigitizeIt was used to
scan the KM curves. The scanned data and the numbers of patients at
risk for various time points were used with the algorithm. With such
reconstructed survival times, the resulting KM curves are reported in
Figure 2A, which appear to be identical with their counterparts pre-
sented in the article. Moreover, with the reconstructed data, the haz-
ard ratio and the corresponding 95% CI estimates are 0.63 (95% CI,
0.47 to 0.84), which are practically identical to those published in
Zukin et al.15 Figure 2B provides the nonparametrically estimated
hazard ratio (CP over P). The hazard ratio varies over time, visually in
favor of CP early in the study but then approaching one at the end of
the study. It is interesting to note that the P value for testing the
adequacy of the PH assumption is .43 on the basis of the Scheofeld
residuals. This is a typical case in which a global lack-of-fit test is not
informative. Because it is not clear that the PH assumption is valid, the
reported 37% hazard reduction may be difficult to interpret. The
assessment of the treatment effect based on the estimated hazard ratio
is further complicated by the lack of absolute hazard experienced in
the P arm as a reference.

For the third example, we used the data from the study reported by
Allegra et al17 published in JCO, which was a randomized trial to assess

efficacy and safety of the combination of bevacizumab and FOLFOX6 as
the adjuvant therapy in patients with stage II to III colon cancer. A total of
2,678 patients were observed for overall survival after being randomly
assigned to either modified FOLFOX6 (mFF6) or mFF6 plus bevaci-
zumab.Themedianfollow-uptimewas4.9years.Again,because thedata
are not available to the public, we used the algorithm proposed by Guyot
etal16 toreconstructthepatients’ survival times.Figure3AandBshowthe
resulting KM curves for the survival time end point and the hazard ratio
estimates over time. It appears that the hazard ratio is approximately
constant throughout the study period. The hazard ratio estimate is 0.95
(95% CI, 0.79 to 1.13) with P � .56.17 Despite a large study size (n �
2,678)witharelatively longstudyfollow-uptime, the intervalestimate for
the hazard ratio is rather wide because of low observed event rates, sug-
gesting that there may be lack of information to make a clinical compari-
son of these two treatments. Such a conclusion may be misleading.

ALTERNATIVE ROBUST MEASURES FOR THE DIFFERENCE
BETWEEN TWO SURVIVAL CURVES

There are various model-based summary measures for the between-
group difference, for example, the incidence rate ratio obtained from
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Fig 2. Estimated survival curves and the hazard ratio with reconstructed
data for comparing single-agent pemetrexed (P) with carboplatin plus pemetrexed (CP)
in patients with advanced non–small-cell lung cancer. (A) Kaplan-Meier curves for CP
(blue) and P (gold). (B) Estimate of the ratio of hazard functions (CP over P) over time and
the corresponding 0.95 point-wise confidence band.
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the Poisson model 18 or the scale-change parameter, assuming that the
ratio of survival times for the two groups is constant stochastically.19

Like the hazard ratio estimate, the corresponding estimate of such
model-based summary measures can be difficult to interpret when the
modeling assumption is violated. Here, we present several model-free
summaries for the two survival curves and illustrate them by using the
data from the ECOG multiple myeloma study. We report the resulting
model-free summary estimates in Table 1 with the data from the other
two examples.

Ratio (or difference) of t-Year Survival Rates

If we are interested in, for example, a relatively long-term survival
benefit, a simple comparison of the survival probabilities at a given
time (eg, the survival rate ratio or difference) is a sensible choice for
quantifying the group difference. Such measures can be easily esti-
mated via the KM curves. For the multiple myeloma example, if we are
interested in survival at 40 months, the two observed survival rates are
0.697 for low-dose and 0.735 for high-dose therapy. The ratio of the
two survival rates (low dose over high dose) is 0.95 (95% CI, 0.82 to
1.10). Numerically, although not statistically significant, the low dose

appears slightly worse than the high dose at this time point. Con-
versely, for a short-term survival comparison, say, at month 24, the
observed survival rates are 0.882 for low-dose and 0.784 for high-dose
therapy. The estimated ratio is 1.13 (95% CI, 1.03 to 1.23), indicating
that the low dose is significantly better at this time point.

Ratio (or difference) of Percentiles of

Survival Functions

Another commonly used model-free contrast in practice is the
ratio (or difference) of two median survival times. The estimate can be
easily obtained via the KM curves, and the CI estimate for such a group
contrast measure can be constructed via a simple resampling method
such as bootstrapping.20 However, if the event rate is relatively low or
the follow-up time is short, the median failure time may not be
estimable from the observed data. In this case, one may estimate the
ratio of lower percentiles of the survival curves.21 For the multiple
myeloma example, the estimated tenth and twentieth percentiles are
20.3 and 30.8 months for the low-dose group and 9.5 and 22.1 months
for the high-dose group, respectively, based on the KM curves. The
ratios of the survival times (low dose over high dose) based on the
tenth and twentieth percentiles are 2.15 (95% CI, 1.17 to 3.96) and
1.39 (95% CI, 0.87 to 2.23), respectively.

Ratio (or difference) of Restricted Mean Survival

Times or Restricted Mean Time Lost

As an alternative to the median, the mean survival time would be
a good summary of the survival time distribution, but it typically
cannot be estimated well because of censoring. Conversely, unlike the
median, one can slightly modify the concept by using the restricted
mean survival time (RMST) as a summary to accommodate the study
follow-up time.22-26 For the multiple myeloma example, the study
follow-up time was about 40 months. The RMST is simply the popu-
lation average of the amount of event-free survival time experienced
during this initial 40 months of follow-up. This quantity can be easily
estimated by the area under the KM curve up to 40 months. The area
under the low-dose KM curve (light blue area in Fig 1C) is 35.4
months; that is, one expects a typical patient treated with the low-dose
therapy to be alive for 35.4 months of the 40 months of follow-up. The
corresponding area under the high-dose curve is 33.3 months. Then
the ratio, 1.06 (95% CI, 1.00 to 1.13), of the two estimated RMSTs
would be a clinically meaningful global summary of the group differ-
ence. The choice of 40 months to define the RMST is crucial, and a rule
for choosing this value may be prespecified at the study design stage
with respect to the clinical relevance and feasibility of conducting the
study. If we are interested in the so-called restricted mean time lost or
“months of life lost up to 40 months,” whose empirical counterpart is
the area above the KM curve (light gray area in Fig 1C), the estimates
for the low and high doses are 4.6 (40 � 35.4 months) and 6.7 (40 �
33.3 months), respectively. The ratio of these two (low dose over high
dose) is 0.68 (95% CI, 0.47 to 0.98). This ratio also has a meaningful
clinical interpretation: on average, the low-dose patients experienced
32% less loss of lifetime than the high-dose patients during the 40
months of follow-up. With these contrast measures using the RMST,
the low-dose group appears to have an overall survival benefit com-
pared with the high-dose group. Moreover, unlike the hazard ratio
estimate, we can obtain an interpretable background summary for the
high-dose group, 33.3 months of survival (or 6.7 months lost) of a
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40-month window, which may provide valuable information for as-
sessing the relative difference between two groups clinically.

For the second lung cancer example discussed in “Examples
From Cancer Clinical Trials With Survival Time End Point,” in which
the hazard ratio potentially interacts quantitatively with time, the
estimated RMST up to 35 months for the P arm is 7.9 months and for
the CP arm is 11.8 months. Therefore, the estimated difference of two
RMSTs (CP minus P) is 3.9 months (95% CI, 1.5 to 6.3; P � .001) and
the estimated ratio of two RMSTs (CP over P) is 1.49 (95% CI, 1.17 to
1.91; P � .001). With these between-group contrast measures, the
difference between the two treatment groups is highly statistically
significant, just as with the conventional test. Moreover, with the
estimated RMSTs from both arms, we are able to make better
assessments of the treatment difference from a clinical perspective
than those based on the conventional hazard ratio estimate.

For the third colon cancer example, in which the hazard ratio
remains relatively close to one, the estimated difference of two RMSTs
up to 60 months (mFF6 plus bevacizumab minus mFF6) is 0.3 months
(95% CI, �0.7 to 1.2; P � .61). The CI includes zero and thus the two
RMSTs are not statistically different. Moreover, the CI appears to be
rather tight in comparison with the estimated background RMST of
55.2 months in the mFF6 plus bevacizumab arm and 54.9 months in
the mFF6 arm, suggesting that at least with respect to the RMST, the
study provided strong evidence on the clinical similarity of these two
treatments. The estimated ratio of RMSTs, 1.00 (95% CI, 0.99 to 1.02),
further confirms this observation. This is in contrast to the inconclu-
sive interpretation that uses the hazard ratio estimate, possibly because
of the low observed event rates.

DISCUSSION

If it has a strong justification clinically, biologically, or empirically from
previous studies, a model-based population measure such as a constant
hazard ratio or scale-change parameter (ie, under a two-sample acceler-
ated failure time model) can be a good choice as a prespecified summary
for the between-group difference. Otherwise, we highly recommend us-
ing a model-free parameter, with clinical and analytic interpretability, as

the summary contrast measure. The choice of such a primary parameter
should match the aim of the study. For example, if we are interested in the
relative time for a specific percentile or the ratio of the survival rates at a
fixed time point, the corresponding population measure introduced in
“Alternative Robust Measures for the Difference Between Two Survival
Curves” can be the primary target. Conversely, to capture a global profile
of thebetween-groupdifferencewithasinglesummarymeasure, theratio
(difference) based on the RMSTs, with an appropriate prespecified
follow-up time, is a good choice. All the model-free measures discussed
here can be estimated well nonparametrically, and their corresponding
inferenceprocedures suchas theCIestimationcanbeconstructedanalyt-
ically or via a simple resampling method.

In this article, we were mainly interested in quantifying the
between-group difference rather than hypothesis-testing proce-
dures; a P value does not have any inherent clinical meaning. The
conventional log-rank test for testing the equality of two survival
distributions is model free. However, its close connection to the
PH model means that it may lack the power to detect differences
such as that in the multiple myeloma example in which the PH
assumption is clearly violated. Moreover, for the last colon cancer
example in which the event rate was low, a large P value from the
log-rank test cannot differentiate between “no clinically meaning-
ful group difference” and “not enough information for estimating
the group difference.” The CI estimate for an appropriate sum-
mary measure would be more appropriate for the purpose of
clinically assessing a treatment difference.
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Table 1. Summary of Various Estimates for the Between-Group Difference and Corresponding 95% CIs

Group Contrast Measure

Study

Rajkumar et al10

(myeloma)
Zukin et al15

(NSCLC)
Allegra et al17

(colon cancer)

Estimate 95% CI Estimate 95% CI Estimate 95% CI

Hazard ratio (PH model) 0.87 0.60 to 1.27 0.62 0.46 to 0.83 0.95 0.79 to 1.13
t-year survival Month 40 Month 24 Month 60

Difference �0.04 �0.15 to 0.06 0.11 0.02 to 0.21 0.02 �0.02 to 0.05
Ratio 0.95 0.82 to 1.10 2.74 1.09 to 6.93 1.02 0.98 to 1.06

Percentiles 10th 50th 10th
Difference (months) 10.9 2.6 to 19.1 3.7 1.3 to 6.0 1.5 �3.9 to 7.0
Ratio 2.15 1.17 to 3.96 1.66 1.21 to 2.27 1.04 0.90 to 1.21

Restricted mean survival time Month 40 Month 35 Month 60
Difference (months) 2.2 0.1 to 4.2 3.9 1.5 to 6.3 0.3 �0.7 to 1.3
Ratio 1.06 1.00 to 1.13 1.49 1.17 to 1.91 1.00 0.99 to 1.02
Ratio of restricted mean time lost 0.68 0.47 to 0.98 0.86 0.77 to 0.94 0.95 0.78 to 1.16

Abbreviations: NSCLC, non–small-cell lung cancer; PH, proportional hazards.
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